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A MODEL FOR DYNAMIC ALLOCATION OF HUMAN ATTENTION
AMONG MULTIPLE TASKS +

Thomas B. Sheridan and M, Kamil Tulga
Man-Machine Systems Laboratory

Department of Mechanical Engineering

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract

This paper consists of two parts. The first part describes the
problem of multi-task attention allocation with special reference to
aircraft pilcting, the experimental paradigm we use to characterize
this situation and the experimental results obtained in the first
phase of our research. A qualitative description of an approach to
mathematical modeling, and some results obtained with it are also
presented to indicate what aspects of the model are most promising,

The second part of the paper consists of two appendices which (1) dis-
cuss the model in relation to graph theory and optimization and (2) speci-
fy the optimization algorithm of the model,

1. Introduction

We think that an increasingly crucial aspect of piloting an air-
craft is "multi-task allocation of attention", The pilot must monitor
many more systems than before, most of which are growing in complexity,
In earlier days flying the aircraft "by the seat of the pants" was
difficult, but piloting was, more or less, a constant task, It was ob-
vious that the pilot could keep track of what was being controlled at
what time and how well that was working because he was doing it; he was
in_the loop and could see or feel it directly.

As systems become automatic the pilot himself tends to lose track
of what signals are coming into what subsystem and what response that
subsystem is making. Most of the time when everything is normal the
automatic systems do just fine. Indeed if we demanded that the pilot
actually perform all functions which are now automated it is clear he
couldn't do a fraction of such tasks. Yet we expect him to monitor all
such functions, and at the first overt alram or even subtle evidence of
failure we expect him to be able to render a quick accurate diagnosis of
the problem and set it straight.

We call the pilot a "flight manager" or '"supervisory controller" and
we gsee him in the image of a corporation manager with legions of dutiful
automatic servants doing his will and bringing him information as he de-
sires it, The problem is that the corporate manager has time to ponder
and investigate and weigh evidence and consider his decisions. He operates
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on a human time scale: if the corporation manager sees his "production -
vehicle" about to go bankrupt he has at least a few minutes to decide
what's wrong and what to do about it. The flight manager doesn't,

The general research questions implied are:

a) What are the expected behaviors and what are the limits of a
person's capability to allocate his attention among many simul-
taneous tasks of varying importance and varying urgency, as a o
function of the number of tasks, the general pace at which they |
occur and other salient parameters? 1

b) If there is a normative or optimal way a person should perform
such a task, can it be specified as a quantitative model, and
how close does a trained person come to behaving optimally?

}
c) What are the implications for improving the design of the man- ”1

machine systems in which the pilot must perform such multi-task
allocation decisions? v

2, Experimental Paradigm

To characterize such a multi-task decision-making situation we have «
developed a very general experimental paradigm and an associated model, The §
experimental paradigm requires the subject (or decision-maker DM) to select
one at a time from among a number of blocks ("tasks") of different heights j
and widths displayed simultaneocusly on a CRT (Figure 1). His selection, I
made by holding a cursor even with the block "attended to" is in order to
maximize his reward, where the earning rate is proportional to the displayed
"importance” (indicated by the height of each block) and the "productivity
rate" (the rate at which the block decreases in width when "attended to"). |
Blocks appear at random distances from a "deadline" and move at constant '
velocity toward that deadline, disappearing when they first touch it. Var-
ious task parameters have to do with the frequency at which new blocks ap-
pear, the speed with which they move toward the deadline, the variability
in importance, the variability in how far from the deadline they first appear,
and so on. The toal is to "remove" as much block area as possible,

In one experiment blocks continually appear with exponential dis-
tribution in time. In a second experiment all blocks appear at the start
of the run; no new ones appear thereafter, '

An important feature of the experiment is that blocks do not queue
up for service, f.e., if a block reaches the deadline the opportunity to
earn its reward is lost. We cannot say for sure, however, whether blocks
queue in the operator's mind for attention in correspondence to the fact
that at any one instant of time there may be some blocks which are far from
the deadline and others which are close., The close ones, of course, may be
of little importance, so often it is better to attend to more important
tasks which are farther from the deadline in order to ensure that all of
the really important ones do get attended to before the deadline.
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Trajectory in Real Time

Figure 2.
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Figure 2 illustrates a means we have used to obtain a time-plot
of which block the subject selects in which queuve (colunn headings),
Printed symbols in each column tell the service time the block requires,
the time the block will be available, and the value to be obtained,

Having informally experimented with this situation with a variety
of parameter combinations we are now in a position to claim that the
experiment does seem to simulate various attentional demands which are
placed on the pilot. These vary considerably in duration. Some tasks
are urgent, but of modest importance; some are urgent and of great impore
tance; some are not urgent and of modest importance; some are not urgent
but of great importance to be done before the deadline. '

Y
-

3. Experimental Results

As the first phase of the second author's doctoral thesis, experi-
ments with human subjects have been run with various experimental para=-
meter combinations. Because the number of such possible combinations is
50 large we have investigated the effects of changing one parameter at a
time, relative to a "baseline condition". Table 1 indicates that for all
runs the subject worked with 3 queues of blocks (tasks) and runs lasted
400 seconds. The baseline parameters are given above. Seven changes in
parameters are indicated below, made one run at a time, all other parameters
matching the baseline condition in each case., For each the values gained

by each of three subjects, the range of their data, the average, and the
total possible are given.

In Table 1 it is seen that a considerably higher speed of blocks
moving toward the deadline (2) reduces the score, but not much, compared
to the baseline (1). Greater variation in block speed (3) makes little
difference. A reduction of interarrival time (4) of blocks means more
blocks become available - more opporunity is there for earning a score -
but a smaller fraction of these are completed. As the height of blocks
(task value densities) become more variable (5) the net earnings are
little affected, though the presence of a few very lucrative blocks doubles
the total possible score. Giving partial credit (6) for productivity
(allocation) on a task when it hits the deadline increases the earnings
little more than one percent, which is surprising. Lowering productivity
(7) has the most significant effect, as seems intuitively reasonable -~ but

the reduction in score is not quite in proportion to the forced reduction
in rate of doing tasks.

4., A Mathematical Modeling Approach

To accompany the experimental task, we have developed a mathematical
model which can be run on the computer immediately after any human data run.
(The relationship of the model to graph theory in general and the full speci-
fication of the model algorithm given in Appendices 1 and 2 respectively),
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COMMON CONDITIONS

3 queues, 400 sec duration

TOTAL POSSIBLE

BASELINE CONDITION |
Task Interrival time, exponential distribution, mean = 20 sec/queue |
all tasks appear 5 units away from the deadline

all tasks 2,5 units in duration

all tasks speed toward deadline at 0.1 units/sec.
productivity on all tasks 0.5 units per sec.

value density recéangular distributor 0 - 1 utiles/sec

No partial credit was given in the baseline case.

CONDITION % AVAILABLE VALUE GAINED BY SUBJECTS AVG. VALUE (UTILES)
DY KT SJ RANGE

1 Baseline, B .913 .931 . 942 .029 .929 98.7
2 More speed

(2.5 B) .917 .880 .878 .061 .891 98.7
3 Variable speed

(rect, .05-2.5)] .934 .907 .912 .027 .918 98.7
4 Less interarrival

time (0.75B) .803 .809 . 795 014 .802 122.,2
5 More varied

value density

(rect dist 0-2)| .946 .940 . .902 .044 .929 197.6
6 Baseline, but

with partial

credit 943 . 949 .926 .023 .940 98.7
7 Less produc-

tivity (0.5B) 662 660 .650 .018 .650 98.7

Table 1

Some Experimental Results
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The model is essentially a dynamic program which calculates an optimal

",ttention allocation trajectory" for all the blocks present, and then takes

the first step of that trajectory. As soon as each new block appears, the
dynamic programming calculation is repeated. The model is constrained by
three parameters to make it human-like. The parameters may be adjusted
according to various criteria until the model best fits experimental data.
One parameter is a time delay T, simply arjusted to match human motor reac-
tion time plus decision time,

A second parameter is a linear discounting of importance of later
blocks in various alternative trajectories which the dynamic programming
algorithm compares to determine which trajectory costs least. This dis-
count rate we call B. Zero 8 means that, in present evaluation of alter-
native trajectories for future action, what the model earns in the more
distant future weights just as heavily as what it earns in the very next
step. Large B means the model discounts the future completely and only
considers alternative next steps.

A third parameter, Y, is a linear discount rate on distance of blocks
(tasks) from the deadline, determined anew at each successive model
jteration. Zero y means that, in deciding what to do next, blocks far
from the deadline are just as heavily weighted as those close to it
(multiplied by the blocks' individual importance). Large Y means the
model only attends to what is close to the deadline. It is a "putting
out bonfires" strategy.

It may seem at first reading that 8 and Y mean the same thing, but
this is not true, and in fact it was our experiments which led us to see
this distinction: this aspect of the model grew out of the research. The
point is that time into the future, with respect to alternative sequences
of (planned) action, is quite different from opportunity time available,
In other words, the task which is far from the deadline can be done first,
and the one which is close to the deadline done later, The only absolute
constraint, of course, is that no task can be "done" after it crosses the
deadline.

5. Results from the Model

We now have experimented with the model itself on various multi-task
gituations. In those situations cited above where all blocks appear at
the outset we have verified, as expected, that zero f and zero Y are best.
All information is known from the start, and an optimal trajectory as de-
termined by dynamic programming is optimal in an absolute sense.

Curiously, this is not true of the experiment where blocks appear
continually. Let us recall that the dynamic programming algorithm com-
putes an optimal trajectory based on what blocks are in view at the time,
then commits itself to the first step of that op'imal trajectory. Thus,
{f there is discounting in "planning time", optimal may be to do a rela-
tively unimportant but about-to-disappear task, since there is just time
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'ééﬁendeag;o at a time; one important task must, be lost. Had the model

¢hen to complete &n {mportant tagk which is the only one available. But,
while doing the unimportant task, suppose a new important task appears
.th the same opportunity'timgfhs'ﬁhe other important one. A choice must

be'iiade between the two important tasks, since only one task -can’ be~ »

expected the new impottant task‘was;coming.it'would7have attended first

' to the available important task;'igno:inthhe;unimportant ¢close-to-dead-
*i, line one, and then had time available for the new important one. In=
~stances of this effect are revealed in sinulation runs described below. .

- Qur model runs thus far had been made with varying 7 values (reac~
tioq,times)’and either varying 8 or varying Y. T values have been
matched to average reaction times of experimental subjects on a ome=
run-at-a-time basis. N '

We have let the computer compare human DM results with computer
results separately on the basis of five different criteria: 1) per-
cent value gained for the given run out of the total possible value
obtainable; 2) percentage of all completed tasks independent of duration
or importance; J) percentage of time both model and human gubject acted
on the same tasks at the same time; 4) squared differences between cumu-
lative value gained by model and human, summed ovet the entire run;

5) squared differences between incremental value gained by model and
human for brief time interval, summed over the entire ruun.

Figures 3 through 7 show examples of five model runs., Figure 3 is
for subject KT for the baseline experimental conditions. Figure 4 is
for the same subject for a speed 2,5 times as great as the baseline.
Figures 5, 6, and 7 are for three different subjects for a productivity
half that of the baseline. On each page are ten plots, each plot repre-
genting a series of model runs at different values of B (left column, see
abscissa below for value of R) with y = 0, or model runs at different
values of y (right column) with g = 0. Points symbolized by X are model
runs. The horizontal lines represent human data for the given experimental
condition. Circles ave comparisons between human and model. Bach row is
for measures according to a different criterion, as indicated. Thus all
points on any vertical slice represent the same model run. Ordinate
values of the performance criteria are shown at the right.

Thus, considering the plots in order from top criterion to bottom,
the top one is to be maximized (or matched to the line for best fit to
human), The X plot of the second one is to be moximized (or motched to
the line for best fit to human)} the circles on this plot represent %
of tasks which are common to model and human, and are to be maximized.
The third plot is to be maximized, the fourth and fifth are to be minimized.

For the first criterion (% value gained) it is evident that the
model closely approxinates the human, at lower values of B or Y deint
slightly better (as one would expect for little or no discount) while
at higher values doing slightly worse (where the model is not allowed
to "plan ahead", i.e., g is large, or is not allowed to consider blocks
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far from the deadline, i.e., v is large), Interestingly, however, for
data on the first two pages zero B is not quite as good as a slightly
larger 8. The theoretical reason for this was discussed above, i.e,,
with a slight discounting of the future the model is more apt to do the
most important block first, and be more open to new blocks which have
high payoff.,

In everyday terms, this Suggests that a person with lots to do,
little time to do it, and new tasks continually popping up with rela-
tively short deadlines, should not plan too far ahead. Mostly he should
do the most important thing first, ignoring the closest~to-deadline
factor. As he has time to see what's coming farther into the future

and doesn't_expect many new opportunities to be popping up, he should
plan ahead,-

| With respect to the second criterion (% tasks completed) it is
interesting that the model and human match Precisely in a mid range
of B which 1s also the best match of model to human for tasks which
are common to both model and human. This suggests (1) that a 8 in |
this range is a good candidate for a model, (2) that the higher task

! completion capability of the model in other B ranges, without con- f
f commitant increase in total value gained, meant it was wasting time f
!

on unimportant tasks., The Y fits for this criterion are not S0 good
or so consistent, and we begin to see that Y seems not to be a very
meaingful parameter,

i As for the next parameter, Z of time acting on the same task at
; the same time, it appears that the 8 curve peaks at approximately the
same value for several of the subjects, but again the y curve is not
very interesting.

The curves for the final two criteria seem to have little to offer,
except that the fourth curve consistently takes a jump (gets worse) for !
B values at 0.1 or larger, :

Sapp——

Further experiments will seek to refine the model, the fitting
criteria, and possibly add an estimator of future tasks to the op~ :
timization algorithm. i

.
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Appendix 1. The Model in Relation to Graph Theory

The paradigm described in the paper will result in a graph Gy (t) =
G(N;A) with N nodes and A arcs, where each node represents a task and
properties between these tasgks, Note that
ith different nodes can be different and delay--(time-)
processing (or service) and availability times of

them can be different, There-
fore in a reward-time (r-t) coordinate framework we have graph GT(t) as
: shown in Figure Al.

dependent. Also the

Note that in Figure Al 7 values re
nodes, which incidentally can be direct
; constraints can be imposed. tR, ¢D
| and "processing time", respectively.
with the tasks are constant until they
associated with a node will be as shown

present transfer times between
ion-dependent, such that precedence
and t* are "ready-time", "deadline time"
Note that when the rewards associated
hit the deadline, the r-t curve

in Figure-A2a. For the case in

s however, the rewards, rather than
being Fixed-Loss, will be asg shown in Figure-A2b.

In the Figure A2 ts is the slack time, i
during which the task is completed all the re
; task can be gained. Note that "time availabl
? ready-time:

: tA=tD-tR

+€. the latest time; if,
ward associated with the
e" is deadline-time minus

I ) T o 2RSS e e B dC S S

One interesting observation that can be made from Figure-Al is that
in Gp(t) graphs there may not be enough time to get the rewards of all
g nodes N, 1In fact, we can infer from the same figure that the best
L

schedule that can be chosen in the particular graph Gp(t) is Il = (2,1,4)
g> which does not include node (task) 3,

At this point we digress and consider this sequencing problem in
% relation to other common combinatorial problems like Job=Shop Scheduling,
§ Traveling Salesperson, etc, (Golden and Magnanti, 1977),

We can differentiate the sequencing problems listed in Table-Al
according to the following criteria:

1) win multiple journeys between the nodes be counted multiple?
2) Can we add extra nodes?

_ 3) Can the rewards associated with the nodes be delay-dependent?

4) Can the transfer dela

ys between different pairs of_nodes be
different?

5) Is it imperative to return to the base node?

]

- 6) Is it necessary to satisfy the above
{ j certain delay, Tp?

: 7) Can the graph G, desribing the problem change dynamically in time?

e ——— e

*
See list of symbols at end of Appendix 2.

requirement before a
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Using these criteria we have listed some common combinatorial optimiza- i
tion problems with two new ones: o

a) Minimum Spanning Trees, MST (Kruskal, 1956)
b) Steiner Tree Problem, STP (Nijenhuis & Wilf, 1975)
¢) Job-Shop Scheduling, JSS - (Elmaghraby, 1968 and Sahni, 1976)

d) Hamiltom Cycle, HC; alias the Traveling Salesperson Problem
(Held & Karp, 1962)

e) Open Tulga-Path, OPT; alias Multi-Task Attention Allocation, i o
£) Closed Tulga-Path, CTP

Note that id Table-Al the indicator '0' means that the particular cri-
terion need not bg satisfied for the problem at hand, while indicator '1'
is for the opposite case, with 'N/A' indicating that the criterion is not
applicable for the problem, Figure-A3 is a schematic representation of

some of the problems, OTP describes Multi-Task Attention Allocation. = -
~ Problems vs.

Criteria: MST STP Jss HC oTP CTP

1 0 0 11 1 1
2 0 1 N/A  N/A N/A N/A

- 3 0 0 1 0 1 1
4 1 1 0 1 1 1

5 0 0 0 1 0 1

6 0 0 0 0 0 1

7 0 0 0 0 1 1

Table-Al., Properties of Various Sequencing Problems.

Before returning to the Multi-Task Supervisory Control, the reader
can observe from Figure-A3 that, if the requirément was to serve all the
nodes (tasks) with mininum number of controllers (or processors or vehi-
cles or people, etc.) another controller might have been assigned to
node=-3 in Figure-A3(iii), and the OTP problem will become an advanced
version of the 'Bin-Packing Problem'. (Johnson, 1974) The reader may
note here the case of computer aiding (2nd. controller) of the human
operator (lst. controller). (Rouse, 1977) Similarly in Figure-A3(div) an
extra vehicle can serve node-3 and come back to the base node before
Tpy however, unless the return time Tp is sufficiently large, node-4
cannot be served whatever the number of vehicles, but as TR increases
3, then 2 vehicles will be enough to serve all the nodest the CTP then
becomes an advanced 'Vehicle-Routing Problem". (Golden, 1976)

We can see from Figure-A3 that Multi-Task Attention Allocation
Paradigm is representable by the OTP Combinatorial Problem when we con=
sider that node O (base node) is where the DM currently is, and 4 tasks
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are (or will be) available with different properties. The DM will then
act on the first task of the optimal schedule, e = (2,1,4), i.e, task 2.

Note however, that new tasks may appear on this graph Gp(t) probabi-
listically according to the interarrival rates and with the task para-
meters explained in the paradigm section, and the thing to be maximized
is the reward gained at the end of the experiment, so that tasks that are
going to appear cannot be ignored. That is to say: since graph Gp(t)
is time-dependent, then the optimal schedules II°(t) on them are time-
dependent too,

Appendix 2. Optimization Algorithm of the Model

In choosing his control, i.e., which task to at upon, we can model
the DM as an optimal controller who maximizes his expected returns over
a planning horizon. (Koopmans, 1964). In particular, the DM will act
to maximize his expected total returns over a finite planning horizonm,
T, with a discount function B(B, t):

T
max. r(l) = E[df Rn(t)dt]

where Rﬂ(t) =(1 ?)en Rij(t) * B(B, t)

in which the summation is over all the tasks (i,j), which collectively
make up the ordered task set, schedule II, that the DM expects to act
upon over his planning horizon. Ry;(t) is the return he gets for acting
on (or completing) the task (i,j) during (or at) time t.

For the case in which the DM gets credit continuously while acting
on a task, the Rij(t) will be as shown in Figure-A4.

In Figure-A4, tii4, Pijb dij: Pij represent the time at which the
DM plans to start acting on the task, the value density of the task, the
duration of the task, and the productivity of the DM for the task (i,j),
respectively,

1f however, the DM is going to get (full) credit only after success-
fully completing a task, then the Ryj(t) will be as shown in Figure-A5.

The DM8 in effect, will choose at each decision point a schedule
m° = (Hi, My,+..) that he intends to act upon to maximize his expected
returns, and then he will actually act upon the first task H{, in this
ordered set of tasks.

It is probable and acceptable that he might have to give up on
acting on-some tasks when their 'available times' are small - due to
their high speed and/or due to their proximity to the deadline - or
when they have comparatively low value densgities, especially in compe-
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tition with other simultaneously available tasks which are preferred in
these respects. Another important parameter, of course, is the trans-
fer time Tj{% between the queues., He has to consider the fact that he
will end up getting no credit for a period of time when he transfers his
control from the i.th queue to the i'.th one.

T R TR

The algorithm for finding the optimal schedule of tasks Ho, to act

e e THT T RWEEE T e

upon is:
Algorithm T _PATH , "
Input (usage, TR’ xijk, Tiqrs B. G)

The input parameter 'usage' indicates whether an OTP or a CTP is
desired, and if it is a CIP, TR is used as the required return time to
the base node. T is the transfer-delay time matrix between the queues -
of tasks and B, and G are discount functions on future returns and on
tasks away from the deadline~tasks with larger slack-times -, respectively.

AR Bt a s b i o

Note that the system state temsor Xjik specifies the various task
parameters for each given instant of time like:

1) whether the task is available (display) or not, Lij (=1 or 0)
2) the return associated with the task as a function of time,
Ry;(t)
. P
3) the processing/service time of the task tij(t)
4) the 'available time' of the task, t%j(t)

Output optimal schedule N°, and discounted present value r(M1°) and
completion time c(Il°) associated with it,

Step~-1 [Initialize]

for i =1 to I do

for § = 1 to Jydo
while Lys = 1 do /* is the task available ? */

transform (i,3) to % and
generate the tuple (r(%), c())

| r(l) = Ro(t = 0)
, c(t) =T, + t';(t = 0)

end
end

Note that Rg(t) = fmuij(t), B(B, ¥)*dx
=t

Furthermore, the tasks currently available are summed to give N, which
is also the maximum number of stages, M, the optimal schedule can have.

588

.. ,. S e i - o SRR ST 2



T T T TR RN R T AR R e TR

= el e

oy T R RS T

Balbib b i b Al Al st it o R aine S
ihad -

s

et ot 1 A s

Step~2 [Generate schedules that are m stages deep] ORIGINAL PAGE IS

R QUALITY
for m = 2 to M do OF POOR Q

generate ail m—member~subsets =g
and for each task Le§
generate the (r(M) » c (i) tuple(s)
~where T ={I1' 4y ¢}, 1,e. schedule IT i8 schedule II°
with task £ at stage m,
~for each l'[',‘a order{s-z}, i.e. for each ' ¥ {S-R,},
~where the 'Z!' operator tests whether each member of one
set 18 also contained in the other, (Weinberg, 1971)

elll) = r(ii') + Rg(t = c(ll*))
e = e(ll') + 1, + c;’(: = c(11'))

where L', 1s the last task - task at stage (m~-1) in schedule IT',

Eliminate schedules according to the rules:

1) Eliminate the tuples which are infeasible, that ig credit
cannot be obtained from the last task £ in schedule I
before it reaches the deadline; or if usage is CTP, before

(Tp - t4,), where Teo 1s the transfer time between the
queue of task & and the base node 0.

2) Eliminate schedule Hl, if there is a schedule HZ, such that:

nZy?

and El = 22 2

or queue of 21 = queue of £

~%s are the last tasks -at stage m~- in the respective
schedules~-

and r(Hlli r(ﬂz)
and c(ﬂlli C(ﬂz)

3) Eliminate the schedules that are less than (m-1) stages
deep.

and

Step~3 [Return to the base node if usage is CTP)

if usage = Closed Tulga-Path then
for all schedules Il do

T = £(M) + R (t = c(m)
c(ll) = c(i) + Yo

with £ being the last task of schedule IT,
end
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Step-4 [Optimall
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The optimal schedule II° is the one with the property:
r(°) > (M) for all N 4 II°,

and 1if
r(°) = c(f) then c(N®) < c(M)

Note that when the rewards of nodes are delay-independent then this
algorithm reduces to the dynamic programming formulation of the Traveling
Salesperson:Problem. (Held & Karp, 1962). On the other hand, when trans-
fer delays between all tasks are equal and when rewards of all tasks are
Fixed-Loss, i.e. constant up to a certain delay (time) and then zero, then
the solution will reduce to Job-Shop Scheduling with Deadlines, (Elmaghraby,
1968 and Sahni, 1976).

Several things should be clarified at this point. First, if the model
is permitted to get partial credit, as in Figure-A4, then the tasks which
will hit the deadline before they can be complted will also be included
in the optimization, although with their returns Ry (t) appropriately ad-
justed to reflect the gain that can be obtained from them before they
disappear.

Another point that should be emphasized is that, since all the dynam-
ics of the tagks are known a-priori by the algorithm (and also by the human),
there is no need to repeat the optimizaktion unless there is a new task
arrival; when no new information is presented, the optimal plan, i.e., the
currently optimal schedule will be followed in real time as the tasks in
this linked list are completed, It has also been proven theoretically
(McNaughton, 1959) that there is nothing to be gained by shifting attention
from ocne task to another and back again, even in the case of no time
penalties for doing so. On the other hand, if after a new task arrival
the first task in the new optimal schedule is not the task that is currently
being attended, then the model will pre-emptively leave the current task to
serve the first task in the new optimal schedule. However, the task that was
pre-emtively abandoned might still be in the new schedule, and conditions
permitting may eventually be re-attended.

The effect of G(y, t%) will be to adjust the return Ry;(t) for acting
on task (i,3), by changing the effective value density of tge task (1,3)

as?
8

where t. 1s the slack-time of the task, i.e., t5 . maxa(b,l(xlﬁ)-(d/p)i}.
with x,%,d,p representing the current position, speed, current duration
and the productivity associated with the particular task, respectively.
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Note that the idea of weighing tasks according to their initial

priorities plus incremental priority increases as they wait in a queue

(Carbonell, 1966 and Jackson, 1965), as shown in Figure-A6, corresponds )
to the G(y, t%) function, where the initial priority is determined by the

initial proximity of the task to the deadline, and this priority in-

creases as the task approaches the deadline.

It is interesting to note also that, as the speeds of the taske
approach zero, i.e., the deadlines are at infinite future time - and
if the transfer times between all the tasks are equal, then the DM is
modeled to choose the new task to act upon, according to:

max. @,.p
(1,j) 34

This, of course is the familiar result from the Queueing Thevry (Smith,

1956) when we consider the productivity of the DM,

s 8s the service

p L
rate Yy and the value density of the task (i,j) Dijigs the negative cost "?
per unit time delay €4y -

min, ¢, M, wherec, <0
(1,5 Y =
<
List of Symbols
G graph |
t time /
T  transfer time
€ dummy time
r reward available at a node (task)
R reward gained for a givean plan
T a schedule (M) total discounted return of a schedule
c() completion time of a schedule
Ii® that schedule which is optimal
Tp deadiine vtime for return to base node
T planning horizon
B discount function on future returns
8 discount parameter (rate in this case) on {uture returns
G urgency discount function
Y urgency discount parameter (rate in this case)
1 total mumber of qucues
Jy total number of taske in queue i, ;
% combination of 1 & j for any task
't maxinum number of stages that optimal schedule can have
m stage index ;
d duration :
X speed
f  value density
p productivity
X position
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P processing time
tR ready time
t? deadline time
tA available time
ts slack time
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